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Experiments on the Weis-Fogh mechanism of 
lift generation by insects in hovering flight. 

Part 1. Dynamics of the ‘fling’ 
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From a series of experiments using simplified mechanical models we suggest certain 
minor modifications to the Weis-Fogh (1973)-Lighthill (1973) explanation of the so- 
called ‘ clap and fling ’ mechanism for the generation of large lift coefficients by insects 
in hovering flight. Of particular importance is the production and motion ofa leading 
edge, separation vortex that accounts for virtually all of the circulation generated 
during the initial phase of the ‘fling’ process. The magnitude of this circulation is 
substantially larger than that calculated using inviscid theory. During the motion 
that subsequently separates the wings, the vorticity over each of them is convected 
and combined to become a tip vortex of uniform circulation spanning the space 
between them. This combined vortex moves downwards as a part of a ring, of large 
impulse, that is then continuously fed from quasi-steady separation bubbles that 
move with the wings as they continue to open at a large angle of attack. Such effects 
are able to account for the large lift forces generated by the insect. 

1. Introduction 
Weis-Fogh (1973) and Lighthill (1973) have devised an ingenious explanation for the 
fluid-dynamic processes whereby certain imects are able to generate large lift coeffi- 
cients by use of the so-called ‘ clap and fling ’ mechanism. They give particular emphasis 
to the ‘fling’ portion of the motion and in the present paper we follow this tradition 
and show how real fluid effects modify the inviscid argument put forth by these two 
authors and as partly anticipated in the latter paper. However, in subsequent parts 
we hope to show that’ both the ‘clap’ and the ‘flip’ phases and interaction effects are 
also important and account for much of the total impulse applied to the fluid by the 
insect during each cycle of wing motion. 

The overall problem, originally outlined by Weis-Fogh (1973), has been extended 
and reviewed by Lighthill (1973, 1975) and modified by Ellington (1975) so that the 
basic motion of the wing surfaces seems clear, although some previously unrevealed 
and important subtleties will be discussed in 9 2. Starting at  the instant in time when 
both wing surfaces are pressed together, the ‘fling’ stage consists of an opening of the 
wings by rotation about their bottom edges until the including angle between them 
is about 120” at  which time they begin to  move apart in an arc centred a t  the wing 
root a t  the body of the insect (see figure 1). Although this process was originally 
discussed for the small wasp Encarsia formosa, it now appears that larger insects use 
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FIUTJRE 1 .  Diagrammatic view of wing motion in ‘fling’ mode. After Lighthill (1973). (a), ( 6 )  
and (c) show the initial phase of the ‘fling’, the sequence forms the basis for the experimental 
apparatus of figure 3. ( d )  Second phase of the ‘fling’. 

the same processes (Ellington, private communication) so that a wide range of Reynolds 
numbers (Re) is encompassed in nature from values as low as 20 to valaes at least as 
large as 200. (Here Re = cjci/v and 616 is the rotation rate of the surface, c,, a, maximum 
chord length and v the kinematic viscosity of the ambient fluid.) The initial stages of 
this process, i.e. the wing rotation about a common axis, figures 1 (a)-(c), also appears 
to be typical of a large group of insects of which the Papilionoidea or buttedies are 
probably the most notable. In  this sub-order, the insect’s dimensions and the wing 
flapping rates can be substantial, resulting in values of Re as large as 5 x 103; while the 
h a 1  angle, 6, in figure 1 ( c ) ,  is typically 270-360’. 

I n  Lighthill’s ( 1973) theoretical description of these processes, a two-dimensional, 
inviscid model of the wing opening process was considered, in his 9 2. The inrush of air 
into the opening gap corresponds to an initially infinite circulation (I?) around a single 
wing which falls, as the wings open, to a minimum value of 0.69 6 c 2  when 8 = 180” 
(see figure 7). It waa hypothesized that at some intermediate stage, when 0 M 120°, 
I? is slightly larger than the quoted minimum value and as the wings begin to part 
with velocity U ,  that a lift corresponding to pUI’/unit length is immediately devel- 
oped without the need to continuously shed trailing vorticity and for the lift to build 
slowly to its asymptotic value as in the classical problem of an impulsively started 
single wing calculated by Wagner (1925). It was pointed out that the lift in the sub- 
sequent horizontal motion of both aerofoils depends only on the circulation around 
each; also that such circulation about one aerofoil generates a downwash at the other 
which reduces its effective angle of attack below the apparently very large geometrical 
angles of attack which are observed. 

Section 3 of the same paper gave a lengthy discussion of the viscous effects that 
must be expected to modify the pattern described above. The certainty that they must 
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FIGURE 2. Another possible sequence of wing motion in which the leading edges of the wings 
move in an horizontal plane and the axis of rotation moves upwards. This sequence forms the 
basis for the motion of the wings in the experimental apparatus shown in figure 4. 

involve a leading-edge separation which will slightly enhance the overall circulation 
was emphasized. Section 4 was concerned with embedding the two-dimensional- 
aerofoil treatment into an overall three-dimensional picture of the flow around the 
hovering insect, emphasizing that the weight of the insect would be balanced by the 
impulse of a chain of downward-moving vortex rings, which at  large distances below 
the insect would, a t  its Reynolds number, be merged by the action of viscous effects 
into a laminar jet-like motion. Those suggestions anticipate to a certain extent the 
findings of this paper, although the latter are much more precise and quantitative 
and are demonstrated with clear model experiments. 

In  $ 2  we describe the models used to unravel features of the flow around wings 
moving in a real, viscous fluid; in 5 3 the results are described while in 5 4 we discuss 
the consequences of these results and use a simple order of magnitude argument to 
calculate the forces involved. 

2. Apparatus and procedure 
In  the present case, the design of models to simulate insect wing motion is hampered 

by an inexact knowledge of the precise details of such motion. In  particular, during 
the initial opening phase it is not clear whether the motion is simply a rotation about 
an axis fixed in space (figures 1 a,  b )  as modelled in the theory, or if a simultaneous 
vertical rise of the axis is also involved (figure 2). Such a vertical excursion would be 
created if the wing opening were caused by a simple translation of the leading edge in 
such a way that trailing edges were forced together by fluid dynamical forces thus 
produced. Also, if the lift forces substantially exceeded the insect weight the insect 
itself would accelerate upwards lifting the axis of rotation at the same time. From 
published accounts both horizontal and vertical movement of the wing leading edge 
appears to be involved during some phases of the total cycle, however, in the two 
models to be described we have considered the two extremes mainly for reasons of 
mechanical simplicity but also to see how sensitive the flow pattern is to the exact 
details of overall vertical motion. We also believe that the flexibility of the insects' 
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FIQURE 3. Apparatus to study two-dimensional flow over rotating wings. The chord is 10 cm, the 

wings 30 cm long and are placed between end walls to  avoid three-dimensional flows. 
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FIGURE 4 (a-c). For legend see facing page. 

wings, and their subsequent response to the forces applied to them, modify the flow 
pattern over the wing and thus, in turn, change the forces. Because of the greater 
complexity introduced by this possibility, and because even the grossest features of 
the flow are not known, we have postponed discussion of this complication to a later 
paper and will only consider the flow due to inflexible wings in what follows. We also 
ignore the effects of downwash due to vorticity produced during previous wing motions. 

The first model (figure 3) was made to simulate the two-dimensional theory as 
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FIUURE 4. (a, b, d )  Diagrams showing the mode of operation of the three-dimensional model. The 
apparatus is operated by hand. Details of the main wing bearing are shown in ( c )  but the devices 
that stop the wings at a fixed angle of attack have been omitted for the sake of clarity. (e) Shows 
a plan view of this apparatus and locates the light planes used to illuminate small wax particles 
in the fluid. The wings are shown leaving the light planes in order to show that the ultimate flow 
picture will be of the tip vortices. 

closely as possible and it is, in fact, a modification of an initial one that used only one 
wing and a solid wall a t  the plane of symmetry. This latter model gave some interesting 
flow patterns resulting from boundary layer separation a t  the stationary wall. I n  order 
to avoid such problems, a symmetric model was built with two wings that could be 
released from rest from any initial angle (Oi). With the counterweights fixed into the 
position shown in figure 3 the rate of wing opening was almost constant once the wings 
had opened through a small angle. 

The second model (figure 4) is considerably more complex in its mode of operation 
since we wished to observe the effects of the three-dimensionality of the flow field. 
This model simulates the wings motion of the real insect very closely, but perhaps 
not closely enough. The vertical body of the insect is replaced by two vertical rods 
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FIGURE G .  0 2’s. t at high Re - 13000 and low Re N 32. 

that rotate about their axes. Two horizontal rods are soldered to theseverticalmembers 
and the wings themselves are attached to the former through ‘Teflon’ bearings SO 

that they can rotate about the horizontal axes. Two sets of wings were made; the first 
was cut from 0.020 in. thick stainless steel sheet and the second from 0.030 in. Lucite 
sheet. Both are sufficiently light that, as the vertical rods are swivelled outwards, the 
resulting fluid dynamic forces push the trailing edges of the wings together to form a 
V. When the angle of opening (8) reaches approximately 120”, thin rods attached to 
the wing axes hit ‘stops’ and further wing rotation is prevented. Thereafter the wings 
move in an  arc, i.e. 4 increasing, with a constant angle of attack until they ‘flip’ over 
a t  the farthest extreme of their motion, 

Both models could be placed in a large Lucite container filled with either water or 
glycerine and the flow observed using dye or small, neutrally buoyant wax particles. 
By taking streak photographs of the latter using a camera with a known exposure time, 
one can measure the local fluid velocity and, hence, determine the circulation around 
the wings at any instant. 
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FIGURE 7.  rl/I’,, vs. t at  high and low Re. (See figure 14 for a definition of F1.) 

3. Results 
3.1. Experiments on two-dimensional j lou) over a rotating wing-pair 

Two sets of experiments were performed. The first used water as the working fluid, in 
order to investigate the system’s behaviour a t  higher Reynolds numbers suitable for 
comparison with Lighthill’s (1973) inviscid theory. From the photographs of this 
flow (figure 5, plates 1 and 2), it is immediately clear that a Separation vortex is 
formed that grows bigger as the wings continue to open as suggested in 3 3 of Lighthill 
(1973). However, i t  is also clear that  the major part of the circulation created by the 
wing motion is contained within these vortices. I n  fact, the circulation around the 
wing surface alone is actually of opposite sign to that in the vortex, being dominated 
by the vortex induced flow directed towards the wing tip on the upper surface. In 
figures 6 and 7, we show the angular displacement-time history and the total 
circulation-displacement history for this flow. In  the latter we have normalized the 
circulation, using a mean value for the angular velocity (i.e. f ,  = Zc2)  while the 
total circulation itself was measured directly from the photographs using the known 
exposure time to  calculate the local velocities of individual particles. 

We note that initially, for small opening angles, Lighthill’s inviscid theory estimates 
the circulation reasonably well. However, after the wings have opened through 40’ 
or so, this trend is reversed and the experiment rapidly departs from the theoretical 
values. This occurs because the real fluid is able to accumulate vorticity within the 
separation vortex, while in the inviscid model the intense vortex sheets created 
initially are actually reduced in strength by the subsequent wing motion. Also the 
slight enhancement of circulation predicted by Lighthill [1973, (equation 14)] as a 
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consequence of the leading-edge separation bubble is seen to be qualitatively correct, 
but the quantitative effect observed is much greater. Differences must also result 
because the idealized wing motion takes place a t  constant angular velocity, requiring 
an infinite torque initially, whereas the wings in any real experiment must accelerate 
and decelerate to and from a constant speed over a reasonable fraction of their total 
angular motion. In  the fling stage of the Weis-Fogh mechanism, as hypothesized, the 
wings stop rotating when they have reached an opening angle (8) of approximately 
120" a t  which point the measured circulation is approximately three times that 
estimated by the inviscid theory. In  the experiment, the wings continue to open until 
8 M 270") a situation that appears to be typical of the wing excursion of many butter- 
flies. In  this case, the final circulation is very large, being typically 6;c2 to 8Zc2 
depending on the final angle chosen. We will use this result in the appendix in order 
to estimate the lift force on such insects under one particular set of circumstances. 

Both the theoretical and experimental results given above are appropriate for 
flight at large Re.  However, most estimates for the 'clap and fling' mechanism, a t  
least, place a value between 20 and 200 on this parameter under which circumstances 
our estimates are likely to be in error. In  order to remove any doubts on this point, we 
have repeated these experiments in a very viscous fluid, glycerine, and show these 
results in figure 6, 7 and 8 (plate 3). Even a t  R e  NN 32, we see from figure 8 that a sub- 
stantial separation vortex still exists and that the total circulation is still dominated by 
its presence. Several details are of interest. At small opening angles the circulation is 
small, when normlaized with the mean reference circulation 3c2,  because the initial 
opening rates are small and rl must start from zero in this case.? The same trend is also 
apparent in the high R e  data although the trend of the inviscid theory is apparently 
followed to a larger angle. If the data were normalized with the instantaneous value of 
the opening rate rather than the average value, one would expect and, in fact finds, 
a closer agreement. However, the average opening rate is the more useful vaIue to use 
in this case (see $4). Also at low R e  the normalized circulation is genearally larger than 
that at  high R e ,  a result for which we have no explanation at the moment, except to 
note that the same trend with R e  is found during the formation of vortex rings from 
an orifice (Maxworthy 1977). 

3.2. Experiments o n  the three-dimensional $ow created during the ' f l ing  ' process 

In  nature, the fling process apparently occurs only at low R e ,  and so we concentrate 
here on the experiments performed with the model shown in figure 4 placed in the tank 
filled with glycerine. However, initially we have experimented with the same model 
in water using both dye and particles to observe the fluid motion and this has given 
a better appreciation of some of the complex motions that can occur and was very 
useful in interpreting the glycerine experiments which could be visualized using only 
the particle technique. 

In  figures 9 A (plate 4) and 10 (plate 5 )  we show a series of photographs taken 
during one cycle of the fling process using a thin light plane to illuminate the particles. 
In  figure 9 A the light beam was located in a plane that was perpendicular to the 
initial position of the horizontal axes of the wing-pair and cut the transparent wings 

t In  fact in these experiments it proved to be impossible to  start the motion with 8 zero 
because the wings would not open (and also remain stable) within a reasonable time. 
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FIauRE 11. Sketch of vortex flow over one wing during the initial phase of the fling. The total 
flow is symmetric about the centre-line. 

at a line midway between the front and back edges (see figure 4 e ) .  In  figure 10 the 
light plane cuts the wing plane a t  the back edges of the wings (see figure 4 e ) .  From such 
photographs and many hours spent observing particle and dye motion and then 
reconstructing and sketching vortex motion, we present the following composite 
picture of the total flow field, although there are still some subtleties that cannot 
be resolved completely. 

We start the motion with the wings pressed together, as in figure 4 a. As the horizontal 
arms begin to rotate, the hydrodynamic forces acting on the wings are such that their 
bottom edges remain in contact and the wings form a continually opening V as in 
figure 2. Fluid rushes into and out of the opening gap and flow separation occurs at  all 
exposed edges. At the point of maximum opening, the vortex structure is as drawn 
crudely in figure 1 1  and a two-dimensional slice, figure 9 A ,  (a)-(c), is different from 
that shown in figures 5 and 8 for the two-dimensional experiment. We see that a 
second vortex pair is created below the wing surfaces and that it must detract from the 
overall lift created by separation at the leading edge. 

We also note that the flow at this stage is different from that at the same opening 
angle, but at  high Re (figure 9 B,  a+). In  the latter case, the vorticity under the V 
has not concentrated into a vortex, but remains attached closely to the lower wing 
surface, although its contribution to the total circulation is also negative. At low Re 
either separation and/or diffusion occurs on such a scale that an identifiable vortex 
is formed. This result is enough for us to suspect that the insect probably tries to avoid 
such an inefficient situation and that the leading edge motion in reality is such that 
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FIGURE 12. ( a )  Sketch overall flow field a t  the instant before the wings ‘flip’ over at the extreme 
of their motion. Showing the large vortex ring formed by the combined tip vortices. ( b )  Sketch 
of the flow over the wing during the quasi-steady second phase of the fling showing the axial 
flow in the separation vortex that feeds vorticity into the tip vortex. 
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it  moves downwards as the wing opens in order to approximate the two-dimensional 
flow more closely. From the subsequent pictures it is also clear that this vortex is only 
of importance during the initial phase of the fling and that no more vorticity appears to 
be fed into i t  once the wing rotation stops and the trailing edges part. As the motion 
continues and the trailing edges do begin to part (at AB in figure 11), the relatively 
weak vortex ends at E and F appear to join up with the ‘image’ vortex on the other 
wing.? At the same time a developing three-dimensional motion over the upper surface 
of the wing causes the main vortex (CD) to be displaced along its axis to join up with 
the corresponding vortex on the other wing to create an outer ‘tip’ vortex (at AH in 
figure 11)  of more or less uniform circulation spanning the gap between the wings. At 
the same time, vorticity is continuously being created and separated at the leading 
edge to eventually form a quasi-steady separation bubble over the wing (figure 12a, b ;  
figure 15) within which the flow is three-dimensional with a strong flow component 
along the axis of the vortex that removes vorticity from the neighbourhood of the 
wing and into the tip vortex (figure 12 b) .  This condition continues until the wing axes 
reach the extremes of their motion (figure 12a) a t  which time the wings ‘flip’ over, 
reverse direction and acquire circulation of the opposite sign. The details of this 
motion are beyond the scope of the present paper except to note that the ‘flip’ process 
is necessary to ensure the ultimate downward motion of the total vortex pattern. 
This process is shown in figure 13 (plate 6) where we see that the original bubble on the 
top surface of the wing is forced below the wing by the ‘flip’ and moves downwards. 
Had the ‘flip’ not occurred and had the vortex remained on the top surface, its ulti- 
mate motion would have been upwards, representing a negative lift over this last 
portion of the wing motion. The final result of this cycle of wing motion is, thus, two 
vortex rings. A larger downward moving one with a major diameter, to the centres of 
rotation, of the order of the insect’s total wing span (figure 12 a )  and a smaller, upward 
moving one that comes from the trailing vorticity shed at  the inner wing tip (BG). 
The larger vortex is actually slightly tilted because the vorticity closest to the reader 
in figure 12 a has been formed earlier and has had slightly longer to move downward. 
The smaller vortex is only shown diagrammatically because it becomes very distorted 
under the straining field of the larger and rapidly loses a clear identity. However, the 
application of elementary vortex dynamics leads to the conclusion that these vortex 
elements must exist somewhere in the flow and that the force required to produce them 
must detract slightly from the force responsible for the larger vortex. As pointed out 
in the following section, and Lighthill ( 1  973), the total impulse of this system represents 
the integrated effect of the force acting on the fluid during this period of wing 
motion. 

4. Discussion 
From the results presented in the previous section, it is evident that votex motion and, 
in particular the motion of vortex pairs and rings, must be a central concern in any 
description of the dynamics of hovering flight. By way of introduction to this section, 

t Because of the difficulty of determining the vortex motion unambiguously so close to the 
wing root it is not clear whether or not the ends of these vortices actually join up with trailing 
vortices from the inner ‘wing’ tips (BG in figure 11) to form a complex, contorted vortex 
filament that lies both above and below the wing surfaces. 
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we briefly review the appropriate ideas. The crucial concept is that of the fluid impulse, 
as indeed was pointed out by Lighthill (1973) in his figure 8 and the lines following it, 

I = ) p  XXWdV,  s 
where x is the position vector of the element of volume in question and the integral is 
in principle taken over the whole fluid volume but clearly need be taken over only 
that volume within which the vorticity, o, exists. This impulse is created by forces 
acting on the fluid in such a way that 

I = loT F(t) dt, 

where T is the total time during which the force, F, acts. In  the present case it is 
immediately apparent from these two ideas that any vortices that are produced are 
the result of the forces created by the wing motions and that the impulse of these 
vortices in both magnitude and direction can be used as a measure of the integrated 
forces acting on the fluid and, by Newton’s Third Law, the force acting on the wing. 
In particular, for greatest efficiency the insect must strive to produce vortices that 
always move downwards since any motion that forms vorticity moving upwards re- 
presents negative lift and, hence, a loss of altitude. As we have seen, and will be explored 
in what follows, insects that use the ‘clap-fling-flip’ motions are very efficient in this 
regard. 

It is also obvious from the description given in the previous section that the ex- 
planation given by Weis-Fogh (1973) and Lighthill (1973) is basically correct in that 
intense vorticity, large circulations (and as we shall see) large forces are rapidly formed 
by the wings motions and that Wagner effect is essentially avoided. 

4.1. Model of the initial phase of the $ing 

I n  figure 14 we show a section through the wing pair at a distance x from the root a t  
the moment when the wings begin to part a t  the apex of the V and the angle between 
the wings (8,) is about 120”. To fix ideas and ease the algebraic manipulations we will 
assume that the wings have a triangular plan form [figure 14 and as in Weis-Fogh 
(1973), figure 131, that the flow field is conical and that at each x station the flow is 
locally two-dimensional. As a result 

c = 2c0(s/s), L = 2L,(x/s) and rl = 4r0(x2/s2), (1)  

where the subscript ‘0’ refers to maximum values at  the end of the wings, i.e. x = as, 
and r,(z) is the final circulation. 

The final impulse residing in this vortex system when 8, = 120°, is 

I ,  = r ,Ldx  

where p is the fluid density and we have used the formulation in Lamb (1945) $9 155 
and 157, for concentrated two-dimensional vortices. We also assumed that the insect, 
in striving for maximum efficiency, does not just move its leading edges horizontally 
as in our experiments but that they also move downwards in order to partially 
eliminate the vortices below the wing surface (figure 9 A ) .  
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FIGURE 14. Model of the initial pliase of the fling. 

The impulse I ,  has been produced during a time T, so that the average force acting 
over this period of wing motion is, on substitution from ( 1 )  and integrating 

P,  w ,dyos/8T1. (3) 

From figure 5 A  (f), Lo z ic ,  and from figure 7 we will use Po w 2.5&& Finally 

Substitution into (3) gives 
we need to  calculate G, which for an opening angle of 120" becomes n/3Tl. 

- 
F ,  w 0*4lpscg/TX. (4) 

From Weis-Fogh (1973) s z 1.2mm, co z 0.4mm and T, z 2/7OOOs for which 
p, x 3.8 x g. Additionally we should include the impulse created a t  the wing tips 
over a distance of approximately co (i.e. along A H  in figure 11). For this we estimate 
an  average force of O.Gpc$/T; so that this contributes 50% additional lift for an insect 
with the dimensions of Encarsia formosa. The total lift generated during this phase is 
therefore p: z 5.7 x 10-5g. Since the insect weight is approximately 2.5 x 10-5g, we 
see that our estimate is comfortably in excess and allows for any loss of lift that  will 
arise from interactions with previously produced vorticity, deviations from local two- 
dimensionality, a non-triangular planform, wing flexibility etc. 

I n  order to calculate an effective lift coefficient we need to calculate a reference force 
which for our present system becomes 

where the velocity of the wing leading edge during the total opening process is 
u = 2u, (x / s ) ,  so that Frei = &pu$c,,s. Furthermore we will assume based on Weis-Fogh 
(1973) that the wings open fully from q5 = 0 to 135" in a time T2 to give 

uo w # m / T 2  and Frer w 0.17psSco/T~. (6) 
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Circulation rs 
FIGURE 15. Model of the quasi-steady flow during the second phase of the fling. Showing the 

separation bubble that moves with the wing and is responsible for the majority of the lift. 

Finally the estimated lift coefficient becomes 

ct Ti 
Fref s2’T;  

x 3.6- - and since T, % &s, cF, ,N 8.1. CF =- 
F; 

4.2. Models of the totalfEing process 

(a)  Vortex ring representation. The ultimate flow field created by the total opening 
motion of the wings is as sketched in figure 12 (a). For the larger vortex ring we estimate 
the impulse to be 

where r0, the maximum value of the circulation around the wing, enters the trailing 
vortex ring system a t  the outer wing tip (see Lighthill 1973, figure 8). Since little 
vorticity appears to be lost or gained during the transition from the initial fling to the 
quasi-steady opening motion we have further assumed that this value of the circula- 
tion is the same as that in 5 4.1 and that the vorticity left on the wing completes the 
total vortex ring. In  this formulation we have assumed that the distance between the 
centres of rotation within the vortex is 0.9s and have used the results quoted in Lamb 
(1945) 3 165 for a Hill’s spherical vortex.? 

This impulse is produced by a force P ,  acting for a time T2 and hence on substituting 

I, x o-5ips2r0, ( 7 ) t  

for I’, 

Using previously stated values for the insect dimensions and flapping periods gives 

P,  8.1 x 10-5 g. 

t Using a concentrated vortex model gives I2 % O.64pmo and presumably more realistic 
vortex distributions will give an impulse of about these values. 
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From this we must subtract the negative contribution of the inner vortex ring for 
which we estimate the diameter to the centres of rotation to be 0.4s. This force is 
F2j w O-2ps2ci/T,T2 since its circulation is identical that around the larger vortex 
ring, and we finally obtain a total lift of Fz M 1.1ps2c~/TlT2 = 6.9 x 10-5g. Using 
(6) as the reference lift force, we obtain a lift coefficient of 

(b )  Alternative quasi-steady lift model. At first sight it seems that we should be able to 
calculate the mean lift using slightly different ideas since it is associated with the flow 
over the large, quasi-steady separation vortex that moves with the wing (figures 
12a, b,  15). 

It is obvious from very elementary arguments that in order for this quasi-steady, 
separation-vortex to exist, the total flow field must be three-dimensional with the 
vorticity created by separation at  the leading edge being removed by axial flow along 
the vortex lines.? 

In  this way, a steady vortex can be formed over the wing with the axial flow feeding 
the excess vorticity into a tip vortex.$ This is exactly the state of affairs in the present 
problem (see figure 12 b )  and the lift for our assumed wing planform is represented by: 

J O  

which upon substitution for r0 and uo gives 

and 

These values are approximately 75 % of those calculated from the previous model, 
partly because we have ignored unsteady effects and, especially, the impulse associated 
with the production of the ‘starting’ vortices and, partly because of the general 
inaccuracy of these estimates. In  any case the forces based on any of these models 
are far in excess of those needed for the insect to balance its weight and there is sufficient 
overproduction of vorticity to allow for many of the important interference effects 
that will tend inevitably to reduce the available final impulse. 

Finally, based on some preliminary experiments it appears that the ‘ clap ’ phase of 
the wing motion generates an even larger lift-force than the initial phase of the fling 
so that the combined clap and fling is an extremely effective way of continuously 
producing vorticity of the correct sign and a t  no stage produces substantial amounts 
that move in the wrong direction. 

t In  the strictly two-dimensional caae such vorticity is removed by an unsteady shedding 
mechanism, as in the ‘K&rm&n vortex street’, and is very inefficient a t  promoting a steady lift. 

$ The arguments here are similar to those required to rationalize the large lift coefficients 
attained by ‘delta’ wings at large angles of attack where leading edge separation vortices with 
axial flow account for a significant frwtion of the total lift. 
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My interpretation and understanding of the experimental results were greatly 
aided by discussion with Professor Sir James Lighthill and C. P. Ellington a t  
Cambridge University, Professor Philip Saffman at the California Institute of Tech- 
nology and Professors H. K. Cheng and Richard Edwards at the University of Southern 
California. Their help is gratefully acknowledged. 

Appendix. Modelling of some aspects of Butterfly dynamics 
We are now in a position to make some simple estimates of the lift force acting on 

butterflies for at least one clear-cut circumstance. In  this we have been guided not 
only by personal observations, but especially by some very revealing sequences pre- 
sented in a fascinating film by C. P. Ellington and G. G .  Runnells of Cambridge 
University entitled 'High speed research films of free flying insects'. The latter in 
particular reveals clearly the subtleties introduced into the dynamics by wing flexi- 
bility. As a result, basically simple motions often evolve through a sequence of states 
that might be interpreted quite differently by different observers. In  one particular 
sequence a Cabbage White is shown taking-off from rest by apparently performing 
a modified version of our two-dimensoinal experiment. The wings start pressed together 
but, because of wing flexibility, as the wings rotate about the insect's body axis the 
leading edges do not open uniformly (as in our experiment), and so the motion can also 
be described as a rotation about the wing trailing edges.7 The wings then continue 
opening through almost 360" until they clap in the ventral position. In  the spirit of 
our models presented in $ 4  we can estimate the order of magnitude of the forces 
involved in this case and show how it can result in one explanation of the very dramatic 
vertical motion of the insect observed in the movie sequence. We assume that the 
butterfly has a wing of retangular planform with a span r$ and a length 1.1 Taking 
account of the vorticity produced at all exposed edges as in 9 4.1 we estimate the final 
average force to be 

where I?, is the final maximum circulation, TB the time taken for the wings to open 
and we have assumed the distance between the vortex centres of rotaion to be r. 
From an extrapolation of the curves of figure 7 we can estimate 

FB ( P F B r / T B )  ( I + & , ) ,  

r B  z 8 when e, w 360" 

and since 

For r w 4 cm, 1 M 3 cm and TB z 0.03 s this results in a lift force of 1.6 g and thus, for 
insect weighing about 0-2 g a vertical acceleration of 8 g and a vertical rise of 3-5 em. 
In the movie the rise is around +r or 2 cm for our example! Unquestionably our 
estimate is too large because among other things, we have ignored the effect of this 
vertical rise on the formation of vorticity a t  the wings edges. 

t As pointed out by a referee. We are also grateful to this same referee for re-focusing our 
attention on this particular sequence with the result that the present estimate was undertaken 
to replace one of unproven validity. 

$ These correspond to 2c and $8 respectively, in the previous models. 
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In  attempting to analyse the formation of net lift by a continuous flapping we 
are faced with many more interpretational difficulties mainly because the movie 
sequences show a variety of motions depending on the orientation of the insect body as 
it performs a number of gyrations. Again wing flexibility appears to play a vital role in 
modifying the negative lift generated as the wings perform their return or upstroke. 
By making suitable assumptions it is possible to estimate these forces and actually 
calculate a net lift that balances the insect weight. Unfortunately, the details are 
sufficiently problematical to require further observations before they can be set 
down to print. 

Note added in proof 26 April 1979. During recent correspondence with C. P. 
Ellington of Cambridge University he has brought to my attention two papers 
(Ellington 1978) that have much in common with the work presented here, especially 
the emphasis on vortex motions created by insects in hovering flight. He has also 
pointed out a paper by Bennett (1977) on a two-dimensional experiment in which 
the wings are rotated, as in my first experiment, and then pulled apart at angle of 
attack. The resulting observation of a rapid decrease in lift when the wings are 
parted points, I believe, to the critical role played by three dimensional effects in 
removed vorticity produced by leading edge separation in the present experiments. 
In Bennett’s experiments such vorticity can only be lost by a dramatic shedding of 
all the accumulated vorticity with a concommitant loss of lift, as pointed out in the 
footnote on page 61 of this paper. 
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FIQURE 6. ( A )  Particle streak photograph of two-dimensional flow over rotating wings. The 
dominant presence of the separation vortices is apparent. Time between photographs is about 
0-5 8, camera exposure time about &a, Re kl 13000. 

MAXWORTHY (Facing p. 04) 
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FIQURE 6(B) .  Dye photograph of the two-dimensional flow over rotating wings. Re z 13000. 
Note the interior vortex created by boundary layer separation initially but which gains no 
vorticity during the subsequent wing motion. 

MAXWORTHY 
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F~arra~ 8. Same as figure 6 ( A )  except at low Re kl 32. Expoeure time N 4 8. 

MAXWORTW 

Plate 3 
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FIGURE 9 ( A )  and (B) .  For legend see facing page. 
MAXWORTHY 

Plate 4 
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FIGURE 10. Same aa figure 9(A)  except the light slice is located at the back edge of the wings 
(figure 4e). This view gives the best idea of the final location of the tip vortices and the diameter 
of the vortex ring that is formed (see figure 12a). 

FIGURE 9 ( A )  Streak photographs of three-dimensional fling process using a light slice a t  the 
wing mid plane (figure 4 e )  a t  low Re. The directions of vortex motion are indicated as are the 
positions of the wings. The formation of separation vortices above the wings and secondary 
vortices below is clear as is the transition of the separation vortex to a tip vortex as the motion 
proceeds. The outline of the wings, outside the plane of the light beam, is visible in the last few 
pictures. (B) Same as figure 9(A) except a high Re. The secondary vortices below the whgs 
are absent. Also the initial separation vortices, ( I ) ,  are not incorporated into the tip vortex but 
are actually shed downwards between the wings to produce a flow rather different and more 
complex than that found at low Re. Note the appearance of new quasi-steady separation vortices, 
(2), after the original ones (1) have separated from the wing surface. 

MAXWORTHY 
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FIGURE 13. Mid slice through the wing during the flip motion. The separation vortex (1 )  is 
forced beneath the wing on the return stroke, and the new separation vortex (3) becomes the 
tip vortex that replaces that present originally (2). 
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